3.10.76 \(\int \sqrt {a+b \sec (c+d x)} (a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)) \, dx\) [976]

Optimal. Leaf size=382 \[ -\frac {2 (a-b) \sqrt {a+b} (3 b B+a C) \cot (c+d x) E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 d}-\frac {2 \sqrt {a+b} \left (b^2 (3 B-C)-a b (6 B-C)+3 a^2 C\right ) \cot (c+d x) F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 d}-\frac {2 a \sqrt {a+b} (b B-a C) \cot (c+d x) \Pi \left (\frac {a+b}{a};\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 b^2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d} \]

[Out]

-2/3*(a-b)*(3*B*b+C*a)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2
)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d-2/3*(b^2*(3*B-C)-a*b*(6*B-C)+3*a^2*C)*cot(d
*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(
1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d-2*a*(B*b-C*a)*cot(d*x+c)*EllipticPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),
(a+b)/a,((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d+2/3*
b^2*C*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.43, antiderivative size = 382, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.140, Rules used = {4126, 4003, 4143, 4006, 3869, 3917, 4089} \begin {gather*} -\frac {2 \sqrt {a+b} \left (3 a^2 C-a b (6 B-C)+b^2 (3 B-C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 d}-\frac {2 (a-b) \sqrt {a+b} (a C+3 b B) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{3 d}-\frac {2 a \sqrt {a+b} (b B-a C) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{a};\text {ArcSin}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{d}+\frac {2 b^2 C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sec[c + d*x]]*(a*b*B - a^2*C + b^2*B*Sec[c + d*x] + b^2*C*Sec[c + d*x]^2),x]

[Out]

(-2*(a - b)*Sqrt[a + b]*(3*b*B + a*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a
+ b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*d) - (2*Sqrt[a
+ b]*(b^2*(3*B - C) - a*b*(6*B - C) + 3*a^2*C)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a +
 b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*d) - (
2*a*Sqrt[a + b]*(b*B - a*C)*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (
a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d + (2*b^2*C*Sqr
t[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 3869

Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]

Rule 3917

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4003

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[(-b)
*d*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m - 1)/(f*m)), x] + Dist[1/m, Int[(a + b*Csc[e + f*x])^(m - 2)*Simp[a^2
*c*m + (b^2*d*(m - 1) + 2*a*b*c*m + a^2*d*m)*Csc[e + f*x] + b*(b*c*m + a*d*(2*m - 1))*Csc[e + f*x]^2, x], x],
x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 1] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 4006

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c, In
t[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[d, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 4089

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rule 4126

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[b*B - a*C + b*C*Csc[e + f*x], x],
 x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4143

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Dist[C, Int[Csc[e + f*x
]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0
]

Rubi steps

\begin {align*} \int \sqrt {a+b \sec (c+d x)} \left (a b B-a^2 C+b^2 B \sec (c+d x)+b^2 C \sec ^2(c+d x)\right ) \, dx &=\frac {\int (a+b \sec (c+d x))^{3/2} \left (b^2 (b B-a C)+b^3 C \sec (c+d x)\right ) \, dx}{b^2}\\ &=\frac {2 b^2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d}+\frac {2 \int \frac {\frac {3}{2} a^2 b^2 (b B-a C)+\frac {1}{2} b^3 \left (6 a b B-3 a^2 C+b^2 C\right ) \sec (c+d x)+\frac {1}{2} b^4 (3 b B+a C) \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b^2}\\ &=\frac {2 b^2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d}+\frac {2 \int \frac {\frac {3}{2} a^2 b^2 (b B-a C)+\left (-\frac {1}{2} b^4 (3 b B+a C)+\frac {1}{2} b^3 \left (6 a b B-3 a^2 C+b^2 C\right )\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 b^2}+\frac {1}{3} \left (b^2 (3 b B+a C)\right ) \int \frac {\sec (c+d x) (1+\sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=-\frac {2 (a-b) \sqrt {a+b} (3 b B+a C) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 d}+\frac {2 b^2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d}+\left (a^2 (b B-a C)\right ) \int \frac {1}{\sqrt {a+b \sec (c+d x)}} \, dx-\frac {1}{3} \left (b \left (b^2 (3 B-C)-a b (6 B-C)+3 a^2 C\right )\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\\ &=-\frac {2 (a-b) \sqrt {a+b} (3 b B+a C) \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 d}-\frac {2 \sqrt {a+b} \left (b^2 (3 B-C)-a b (6 B-C)+3 a^2 C\right ) \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 d}-\frac {2 a \sqrt {a+b} (b B-a C) \cot (c+d x) \Pi \left (\frac {a+b}{a};\sin ^{-1}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 b^2 C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(1131\) vs. \(2(382)=764\).
time = 18.38, size = 1131, normalized size = 2.96 \begin {gather*} \frac {2 (a+b \sec (c+d x))^{3/2} (b B-a C+b C \sec (c+d x)) \left (3 a b^2 B \tan \left (\frac {1}{2} (c+d x)\right )+3 b^3 B \tan \left (\frac {1}{2} (c+d x)\right )+a^2 b C \tan \left (\frac {1}{2} (c+d x)\right )+a b^2 C \tan \left (\frac {1}{2} (c+d x)\right )-6 a b^2 B \tan ^3\left (\frac {1}{2} (c+d x)\right )-2 a^2 b C \tan ^3\left (\frac {1}{2} (c+d x)\right )+3 a b^2 B \tan ^5\left (\frac {1}{2} (c+d x)\right )-3 b^3 B \tan ^5\left (\frac {1}{2} (c+d x)\right )+a^2 b C \tan ^5\left (\frac {1}{2} (c+d x)\right )-a b^2 C \tan ^5\left (\frac {1}{2} (c+d x)\right )-6 a^2 b B \Pi \left (-1;\text {ArcSin}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+6 a^3 C \Pi \left (-1;\text {ArcSin}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-6 a^2 b B \Pi \left (-1;\text {ArcSin}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+6 a^3 C \Pi \left (-1;\text {ArcSin}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+b (a+b) (3 b B+a C) E\left (\text {ArcSin}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-\left (3 a^3 C-3 a^2 b (B+C)+b^3 (3 B+C)+a b^2 (6 B+C)\right ) F\left (\text {ArcSin}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {1-\tan ^2\left (\frac {1}{2} (c+d x)\right )} \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}\right )}{3 d (b+a \cos (c+d x))^{3/2} (b C+b B \cos (c+d x)-a C \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \sqrt {\frac {1}{1-\tan ^2\left (\frac {1}{2} (c+d x)\right )}} \left (-1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \left (1+\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^{3/2} \sqrt {\frac {a+b-a \tan ^2\left (\frac {1}{2} (c+d x)\right )+b \tan ^2\left (\frac {1}{2} (c+d x)\right )}{1+\tan ^2\left (\frac {1}{2} (c+d x)\right )}}}+\frac {\cos ^2(c+d x) (a+b \sec (c+d x))^{3/2} (b B-a C+b C \sec (c+d x)) \left (\frac {2}{3} b (3 b B+a C) \sin (c+d x)+\frac {2}{3} b^2 C \tan (c+d x)\right )}{d (b+a \cos (c+d x)) (b C+b B \cos (c+d x)-a C \cos (c+d x))} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + b*Sec[c + d*x]]*(a*b*B - a^2*C + b^2*B*Sec[c + d*x] + b^2*C*Sec[c + d*x]^2),x]

[Out]

(2*(a + b*Sec[c + d*x])^(3/2)*(b*B - a*C + b*C*Sec[c + d*x])*(3*a*b^2*B*Tan[(c + d*x)/2] + 3*b^3*B*Tan[(c + d*
x)/2] + a^2*b*C*Tan[(c + d*x)/2] + a*b^2*C*Tan[(c + d*x)/2] - 6*a*b^2*B*Tan[(c + d*x)/2]^3 - 2*a^2*b*C*Tan[(c
+ d*x)/2]^3 + 3*a*b^2*B*Tan[(c + d*x)/2]^5 - 3*b^3*B*Tan[(c + d*x)/2]^5 + a^2*b*C*Tan[(c + d*x)/2]^5 - a*b^2*C
*Tan[(c + d*x)/2]^5 - 6*a^2*b*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*
x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 6*a^3*C*EllipticPi[-1, ArcSin[T
an[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c
+ d*x)/2]^2)/(a + b)] - 6*a^2*b*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2
*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + 6*a^3*C*El
lipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(
a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] + b*(a + b)*(3*b*B + a*C)*EllipticE[ArcSin[Tan[(
c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b - a*Tan[(c +
d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)] - (3*a^3*C - 3*a^2*b*(B + C) + b^3*(3*B + C) + a*b^2*(6*B + C))*Ell
ipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(
a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(a + b)]))/(3*d*(b + a*Cos[c + d*x])^(3/2)*(b*C + b*B*Cos
[c + d*x] - a*C*Cos[c + d*x])*Sec[c + d*x]^(5/2)*Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(-1 + Tan[(c + d*x)/2]^2)
*(1 + Tan[(c + d*x)/2]^2)^(3/2)*Sqrt[(a + b - a*Tan[(c + d*x)/2]^2 + b*Tan[(c + d*x)/2]^2)/(1 + Tan[(c + d*x)/
2]^2)]) + (Cos[c + d*x]^2*(a + b*Sec[c + d*x])^(3/2)*(b*B - a*C + b*C*Sec[c + d*x])*((2*b*(3*b*B + a*C)*Sin[c
+ d*x])/3 + (2*b^2*C*Tan[c + d*x])/3))/(d*(b + a*Cos[c + d*x])*(b*C + b*B*Cos[c + d*x] - a*C*Cos[c + d*x]))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(2760\) vs. \(2(347)=694\).
time = 0.25, size = 2761, normalized size = 7.23

method result size
default \(\text {Expression too large to display}\) \(2761\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*b*B-a^2*C+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d*(-1+cos(d*x+c))^2*(3*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*E
llipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d*x+c)*a^2*b+C*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1
/2))*cos(d*x+c)*sin(d*x+c)*a^2*b+3*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))
/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3+3*B*cos(d*x+c)^2*a*
b^2-3*B*cos(d*x+c)^3*a*b^2+C*b^3-3*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))
/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3+3*B*cos(d*x+c)^2*(c
os(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*
x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b-C*cos(d*x+c)^2*a*b^2-C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(
d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*cos(d*x+c)*sin(d
*x+c)*a*b^2+6*C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b)
)^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^3-3*C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c
)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a
-b)/(a+b))^(1/2))*a^3-C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c
))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3-C*sin(d*x+c)*cos(d*x+c)^2*(cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c)
,((a-b)/(a+b))^(1/2))*b^3+3*B*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/
(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^3+6*C*cos(d*x+c)^2*(cos(d*
x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c)
,-1,((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3-3*B*cos(d*x+c)^2*b^3+C*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2
))*a*b^2+3*B*cos(d*x+c)*b^3-C*cos(d*x+c)^2*b^3+3*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b
+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-6*B
*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*Ellipti
cPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b))^(1/2))*a^2*b+3*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1
/2))*a^2*b-6*B*sin(d*x+c)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))
^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2-6*B*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,((a-b)/(a+b
))^(1/2))*sin(d*x+c)*a^2*b-3*C*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))
/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3-C*cos(d*x+c)^3*a^2*b-C*
cos(d*x+c)^3*a*b^2+C*cos(d*x+c)^2*a^2*b+2*C*cos(d*x+c)*a*b^2+3*B*sin(d*x+c)*cos(d*x+c)^2*EllipticE((-1+cos(d*x
+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))
^(1/2)*a*b^2-6*B*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*a*b^2-3*B*sin(d*x+c)*cos(d*x+c)^2*Ellipti
cF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(
d*x+c))/(a+b))^(1/2)*b^3+C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(
d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b+C*sin(d*x+c)*cos(d*x+c)^2
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin
(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2+3*C*sin(d*x+c)*cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x
+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*b-C*sin(d*x+c)*
cos(d*x+c)^2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos
(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b^2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(1+cos(d*x+c))^2/(b+a*cos(
d*x+c))/cos(d*x+c)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a^2*C+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*b^2*sec(d*x + c)^2 + B*b^2*sec(d*x + c) - C*a^2 + B*a*b)*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a^2*C+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*b^2*sec(d*x + c)^2 + B*b^2*sec(d*x + c) - C*a^2 + B*a*b)*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int C a^{2} \sqrt {a + b \sec {\left (c + d x \right )}}\, dx - \int \left (- B a b \sqrt {a + b \sec {\left (c + d x \right )}}\right )\, dx - \int \left (- B b^{2} \sqrt {a + b \sec {\left (c + d x \right )}} \sec {\left (c + d x \right )}\right )\, dx - \int \left (- C b^{2} \sqrt {a + b \sec {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a**2*C+b**2*B*sec(d*x+c)+b**2*C*sec(d*x+c)**2)*(a+b*sec(d*x+c))**(1/2),x)

[Out]

-Integral(C*a**2*sqrt(a + b*sec(c + d*x)), x) - Integral(-B*a*b*sqrt(a + b*sec(c + d*x)), x) - Integral(-B*b**
2*sqrt(a + b*sec(c + d*x))*sec(c + d*x), x) - Integral(-C*b**2*sqrt(a + b*sec(c + d*x))*sec(c + d*x)**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*b*B-a^2*C+b^2*B*sec(d*x+c)+b^2*C*sec(d*x+c)^2)*(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*b^2*sec(d*x + c)^2 + B*b^2*sec(d*x + c) - C*a^2 + B*a*b)*sqrt(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}\,\left (\frac {B\,b^2}{\cos \left (c+d\,x\right )}-C\,a^2+\frac {C\,b^2}{{\cos \left (c+d\,x\right )}^2}+B\,a\,b\right ) \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))^(1/2)*((B*b^2)/cos(c + d*x) - C*a^2 + (C*b^2)/cos(c + d*x)^2 + B*a*b),x)

[Out]

int((a + b/cos(c + d*x))^(1/2)*((B*b^2)/cos(c + d*x) - C*a^2 + (C*b^2)/cos(c + d*x)^2 + B*a*b), x)

________________________________________________________________________________________